November 25, 2024

NGC 869 & 884 – The Double Cluster in Perseus

NGC 869 & 884 – The Double Cluster in Perseus

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC

Filter: Orion Imaging Skyglow Filter

Guide scope: Astro-Tech 60mm, Starlight Xpress Super Star, PHD2

Exposure: 48x60sec, ISO 800, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/20sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, haze

Lensed Sky Quality Meter: 18.2

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

For a long time there was some debate as to whether the two clusters that make up the Double Cluster are actually associated with each other or just happened to appear in the same line of sight with one lying behind the other. It now appears that they are indeed lying next to each other, each about 7,000 light years away and about 100 light years apart. However, there is some evidence that the two clusters are of different ages, so while they may have formed separately from each other, they are now traveling companions.

The Double Cluster is currently low in the northeast late in the evening and is high overhead at dawn.

NGC 457 – The Owl Cluster in Cassiopeia

NGC 457 – The Owl Cluster in Cassiopeia

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC

Filter: Orion Imaging Skyglow Filter

Guide scope: Astro-Tech 60mm, Starlight Xpress Super Star, PHD2

Exposure: 55x60sec, ISO 800, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/20sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, haze

Lensed Sky Quality Meter: 17.7

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

NGC 457 is one of my favorite open clusters in just about any size telescope. It makes a fine target for binoculars and small telescopes and becomes a very rich field in larger scopes. The two bright distinctive foreground stars makes it fairly easy to locate. In a small telescope it is worth taking some time with this field. At first your eye may only see the two bright foreground stars and a few of the brighter stars of the cluster. As your eyes relax you may start to see some of the fainter background stars and the cluster will begin to blossom into a beautiful field of stardust.

NGC 457 is currently low in the northeast after sunset.

M45 – The Pleiades in Taurus

M45 – The Pleiades in Taurus

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC

Filter: Orion Imaging Skyglow Filter

Guide scope: Astro-Tech 60mm, Starlight Xpress Super Star, PHD2

Exposure: 17x60sec, ISO 800, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, haze

Lensed Sky Quality Meter: 18.2

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

After a long night of imaging I had a few minutes left before the first blush of dawn began to paint the morning sky so I decided to grad a short series of image of M45, the Pleiades in Taurus. I was very curious how the RC8 would frame a large target like this and it did a fantastic job. With such a short sequence under poor sky conditions I didn’t expect to catch any of the nebula, but there are few faint wisps of the blue reflection nebula around Merope (lower right) and Maia (upper right).

M45 is currently a morning object relatively high in the east before dawn.

M20 – The Trifid Nebula in Sagittarius

M20 – The Trifid Nebula in Sagittarius

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC

Filter: Orion Imaging Skyglow Filter

Guide scope: Astro-Tech 60mm, Starlight Xpress Super Star, PHD2

Exposure: (30 + 42)x60sec, ISO 800, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, haze

Lensed Sky Quality Meter: 17.5 (8/1) & 18.2 (8/2)

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

M20, the Trifid Nebula in Sagittarius is one of a series of nebula that grace the summer Milky Way. The red is a tenuous cloud of interstellar hydrogen set aglow by stars embedded in it, the blue is dust in the background reflecting starlight, and the dark lanes are vast streamers of dust in the foreground. Being near the Milky Way this field is crowded with faint stars, though the density of stars is uneven. The dark regions show areas of dust blocking the light from the faint distant stars in the background while the brighter regions are relatively clear avenues into the deep galaxy beyond.

The sky hasn’t been particularly transparent, but it’s getting fairly late in the season for imaging objects in Sagittarius from my backyard. To get this image I combined subs taken on two consecutive evenings; August 1st and 2nd. To get as many subs as I could I started taking pictures during twilight so that I could pick the very first image in each set that captured the nebula as twilight ended and continued until the nebula reached the meridian.

M20 is currently well placed in the southwest as the sky darkens.

M15 – Globular Cluster in Pegasus

M15 – Globular Cluster in Pegasus

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC

Filter: Orion Imaging Skyglow Filter

Guide scope: Astro-Tech 60mm, Starlight Xpress Super Star, PHD2

Exposure: 43x60sec, ISO 800, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, fair transparency, haze

Lensed Sky Quality Meter: 18.4

Stacking: Simple average to accommodate the two different exposure times

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

M15, a bright, condensed globular cluster in a relatively lonely stretch of sky in Pegasus. It is one of the oldest known globular clusters with an estimated age of 13.2 billion years and the first globular cluster found to have a planetary nebula (Pease 1), one of only four planetary nebula associated with a globular cluster. M15 is also one of the most condensed globular cluster and at some point in the distant past it experienced a core collapse that may have heralded the formation of a black hole in its nucleus. This is supported by the fact the M15 is an x-ray source.

This is the last of three first-light images taken with my new Canon EOS Ra camera. I had originally planned to end the evening with an emission nebula, but the hazy sky conditions didn’t look suitable, so I opted for a bright globular instead.

M15 is currently well placed rising the east in the early evening and is high in the south at dawn.

M27 – Planetary Nebula in Vulpecula

M27 – Planetary Nebula in Vulpecula

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC

Filter: Orion Imaging Skyglow Filter

Guide scope: Astro-Tech 60mm, Starlight Xpress Super Star, PHD2

Exposure (6-26-2021): 27x120sec, ISO 800, saved as RAW

Exposure (7-2-2021): 28x180sec, ISO 800, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, fair transparency, haze

Lensed Sky Quality Meter: 18.1 (6-26) & 18.5 (7-2)

Stacking: Simple average to accommodate the two different exposure times

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

M27, the Dumbbell nebula, is an expanding shell of gas that was ejected from a sun-like star as it exhausted its hydrogen fuel. Swollen into a red giant, the star shed its outer shell while its core collapsed into a white dwarf. Fierce UV radiation from the collapsed core sets the surrounds gas aglow with the blue/green light of doubly ionized oxygen. The diameter of the nebula is about 1 light-year with an estimated age of 9,800 years. Located between Sagitta and Cygnus, M27 is fairly easy to find with a small telescope. Visually, it shows two lobes connected by a neck of nebulosity, giving the nebula its characteristic dumbbell shape.

This is the second of three first-light images taken with my new Canon EOS Ra camera. The source images were taken over two evenings about a week apart: 27x120sec on 6-26 and 28x180sec on 7-2. The exposure times reflect the poor transparency on the evening of 6-26. I wasn’t sure how well the two different exposure times would combine, so I used a simple average algorithm rather than using the usual sigma clip.

M27 is currently well placed rising the northeast in the early evening and is high in the south after midnight.

M13 – Globular Cluster in Hercules

M13 – Globular Cluster in Hercules

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC

Filter: Orion Imaging Skyglow Filter

Guide scope: Astro-Tech 60mm, Starlight Xpress Super Star, PHD2

Exposure: (18 + 29)x60sec, ISO 800, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, haze

Lensed Sky Quality Meter: 18.4

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

Globular clusters are relics of the ancient universe and M13 is no exception with an estimated age of 12 billion years. Their great age is an indication of their unusual stability. One consequence of this stability is that any heavy elements that their stars have made remains buried in their cores and the cluster itself has little, if any, interstellar dust. M13 is one of the few globular clusters with a dust-like feature that can be seen as a dark lane extending to the lower left of the core. It is possible that this dust lane is not really associated with M13, but instead is an independent object that just happens to be in front of the cluster.

This is the first-light image taken with my shiny new Canon EOS Ra. The weather really hasn’t cooperated yet, so I combined two sets of source images taken on the evenings of June 26th and July 2nd. One thing that I noted is that even though the sensor was very warm (33-47C) all of the source images were very clean with no hot or cold pixels. Being a mirrorless camera the shutter was smooth and quite. This was one feature that I was particularly interested in after having a few problems with the relatively heavy and complex mirror system in my Nikon D610a. I do luvs the Nikon, but I was curious enough about the performance of a modern mirrorless camera to give the EOS Ra a try. I was also fascinated by the idea of using a full-frame DSLR specifically made for astrophotography and I have enjoyed my previous Canon cameras. So far I am really liking the new camera! It was very easy to integrate into my imaging gear and has been very easy to use. Wonderful!

M13 is currently well placed high in the northeast as the sky darkens.

NGC 7635 – The Bubble Nebula in Cassiopeia

NGC 7635 – The Bubble Nebula in Cassiopeia

Telescope: ES Comet Hunter MN6 at f/4.8, Orion Atlas EQ-G

Camera: Baader modified Nikon 610

Filter: 2” Radian Triad Ultra Hb, OIII, Ha, SII filter

Guide scope: Williams Optics 50mm, ASI290MM mini, PHD

Exposure: 15x180sec, ISO 400, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 64×1/5sec, tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 18.0

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Backyard Nikon, Nebulosity, Deep Sky Stacker, Photoshop

NGC 7635 is almost the inverse of a planetary nebula. Planetary nebula are expanding shells of gas shed from a dying star. The Bubble Nebula is formed from the intense radiation a hot blue star pushing out a sphere in the surrounding gas, making an empty bubble and setting the hydrogen aglow with a beautiful red color. This wide field view includes the open clusters M52 (upper left) and NGC 7510 (lower right), and the emission nebula NGC 7538 is to the upper right.

The Bubble Nebula rises in the northeast late in the evening and is high overhead at dawn.

M17 – The Swan Nebula in Sagittarius

M17 – The Swan Nebula in Sagittarius

Telescope: ES Comet Hunter MN6 at f/4.8, Orion Atlas EQ-G

Camera: Baader modified Nikon 610

Filter: 2” Radian Triad Ultra Hb, OIII, Ha, SII filter

Guide scope: Williams Optics 50mm, ASI290MM mini, PHD

Exposure: 67x60sec, ISO 400, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 64×1/5sec, tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 17.6

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Backyard Nikon, Nebulosity, Deep Sky Stacker, Photoshop

M17 is a stellar nursery lying about 6,000 light years away along the southern Milky Way in the Sagittarius-Carina arm of our galaxy. The soft red glow of this beautiful emission nebula comes from young stars embedded within the nebula setting the surrounding interstellar hydrogen aglow. M17 is one of the brightest emission nebula is the sky and is visible in small telescopes under dark skies. Even under urban skies the bright inner region of the nebula is a fairly easy target.

M17 is currently well placed in the evening sky rising in the southeast as the sky darkens.

IC 1396A – The Elephant’s Trunk in Cepheus

IC 1396A – The Elephant’s Trunk in Cepheus

Telescope: ES Comet Hunter MN6 at f/4.8, Orion Atlas EQ-G

Camera: Baader modified Nikon 610

Filter: 2” Radian Triad Ultra Hb, OIII, Ha, SII filter

Guide scope: Williams Optics 50mm, ASI290MM mini, PHD

Exposure: 36x240sec, ISO 400, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 64×1/5sec, tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, good transparency

Lensed Sky Quality Meter: 18.7

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Backyard Nikon, Nebulosity, Deep Sky Stacker, Photoshop

IC 1396 includes an open cluster and a vast region of H-alpha emission. If I re-frame this field a little bit farther to the east I can just about capture the width of the nebula. IC 1396A is the sinuous wave that makes up the southern border of a dark nebula called the Elephant’s Trunk. It is neat to take a close look at some of the fascinating detail scattered across this region. I have also had a lot of fun glimpsing the Elephant’s Trunk with my little Revolution Imager 2 video camera where it appears as a faint wisp against the background stars.

IC 1396 is currently well placed in the northeast late in the evening and is high overhead at dawn.