May 17, 2024

M92 – Globular Cluster in Hercules

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC, GSO IR Blocking Filter

Guide scope: Astro-Tech 60mm, ZWO ASI120MM mini, PHD2

Exposure: 69x30sec, gain ISO 800 saved as RAW, dithered every 2 images

Darks: Internal

Flats: 32x1sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.6

Stacking: Average, 1 sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

M92 is the ‘other’ globular cluster in Hercules. M92 lies to the northeast of the popular M13 globular cluster in a relatively lonely patch of sky making it a bit harder to locate, but well worth the effort. Interestingly, M92 is listed as being fainter than M13 (Mv 6.4 for M92 vs. 5.8 for M13), but I find the core of M92 to be a tad brighter than M13. This is likely the result the apparent size of M13 being larger than M92 giving M13 a higher total integrated brightness.

M92 currently rises in the northeast during the early evening.

M13 – Globular Cluster in Hercules

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC, GSO IR Blocking Filter

Guide scope: Astro-Tech 60mm, ZWO ASI120MM mini, PHD2

Exposure: 57x30sec, gain ISO 800 saved as RAW, dithered every 2 images

Darks: Internal

Flats: 32x1sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.6

Stacking: Average, 1 sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

This is M13, the Great Cluster in Hercules. Also in the picture is the galaxy NGC 6207 (Mv 11.6) in the upper left along the top edge of this field, and about halfway between NGC 6207 and M13 is the tiny galaxy IC 4617 (Mv 15.2) . If you look carefully at M13 you can see a dust lane to the lower left of the cluster. This is a very unusual feature for globular clusters and it is not clear if this is actually associated with M13 or simply lies in the line of sight with the cluster.

M13 currently rises in the northeast during the early evening.

NGC 95 & 96 – Spiral Galaxies in Leo

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC, GSO IR Blocking Filter

Guide scope: Astro-Tech 60mm, ZWO ASI120MM mini, PHD2

Exposure: 36x60sec, gain ISO 1600 saved as RAW, dithered every 2 images

Darks: Internal

Flats: 32x1sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.6

Stacking: Average, 1 sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

M95 (right) and 96 (left) are a relatively faint spiral galaxies in Leo. M95 shows a fascinating variety of detail including a compact ring of star formation surrounding the core and a golden bar connecting the core to the nearly circular, tightly wound inner spiral while M96 shows a faint, sweeping outer veil.

 

NGC 4565 – The Needle Galaxy in Coma Berenices

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC, GSO IR Blocking Filter

Guide scope: Astro-Tech 60mm, ZWO ASI120MM mini, PHD2

Exposure: 78x60sec, gain ISO 1600 saved as RAW, dithered every 2 images

Darks: Internal

Flats: 32x1sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.6

Stacking: Average, 1 sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

NGC 4565 is a relatively bright edge-on spiral galaxy in Coma Berenices. Glowing at a visual magnitude 9.6 it makes a fine target for modest size telescopes. It is thought that our own Milky Way galaxy would appear similar to the Needle Galaxy when viewed edge-on. It’s neat to see how these big beautiful spirals that appear so expansive when viewed face-on are actually relatively thin when viewed edge-on. NGC 4565 also shows a prominent dust lane common to most spiral galaxies. This galaxy is currently well placed in the evening sky on the northern fringe of the Melotte 111 star cluster, itself a beautifully rich region in binoculars and small telescopes.

Comet 12/Pons-Brooks, 3/27/2024, 20h50m EDT

Telescope/Camera: Seestar S50

Filter: None

Exposure: (60 + 60)x10sec (20min) saved as FITS

Average Light Pollution: Bortle 8, fair transparency at dusk

Software: Nebulosity, Photoshop

This is another quick grab of Comet 12/Pons-Brooks before it got too far down in the before it was lost to the haze and light pollution over my western horizon. This images is the combination of subs taken over a 10-minute period through two Seestar S50s operating in parallel. As the images were being taken the comet dropped from 19 degrees over the horizon to just 17 degrees. Although the comet was an easy target for the Seestar, it was really tough to see in my 10×50 binoculars.

Comet 12/Pons-Brooks, 3/23/2024, 21h00m EDT

Telescope/Camera: Seestar S50

Filter: None

Exposure: (60 + 60)x10sec (20min) saved as FITS

Average Light Pollution: Bortle 8, fair transparency at dusk

Software: Nebulosity, Photoshop

Well, this was fun. I am fortunate enough to own a pair of Seestar S50s that I usually use in in parallel recording data on different targets at the same time, often a series of variable stars. However, in this case I wanted to grab as much data as I could on Comet 12/Pons-Brooks before it was lost to the haze and light pollution over my western horizon, so I used them to image the comet simultaneously over a 10-minute period starting at 9:00pm EDT. This resulted in 60, 10sec exposure from each camera that were then aligned and combined in Nebulosity and processed in Photoshop. Given the challenging conditions I am delighted with the result.

APM 08279+5255 – Quasar in Lynx

Telescope/Camera: Seestar S50

Filter: None

Exposure: 181x10sec (30min) saved as FITS

Average Light Pollution: Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.5 mag/arc-sec^2

Software: Nebulosity, Photoshop

This is one of my absolute favorite objects to image and I was curious whether I could capture it with my Seestar S50. The faint 15th magnitude star marked by the red arrow is the distant quasar APM 08279+5255, the most distant object visible in amateur telescopes with an estimated distance of 12 billion light years! To put this in perspective the Universe is estimated to be 13.8 billion years old and the light from this object has been traveling for 12 billion of those years. The sun is relatively young by comparison, only 4.6 billion years old. When the sun was born the light from this quasar had already been traveling for 7.4 billion years, give or take. At magnitude 15.2 it is a fairly easy photographic target, though locating the exact field can be a bit of a challenge. APM 08279+5255 may also be glimpsed through a large telescope at a reasonably dark site. Imagine that, seeing the farthest observable object in the known Universe with your own eyes! Now that would be neat! In the meantime, I can take a peek at it from my Bortle 8 backyard with my little Seestar S50.

Seestar S50 Example Images

M42, The Great Nebula in Orion, Seestar S50, 10s x 30m

This is a quick example from my shake-down tests with the Seestar S50. The image on the left was the raw live stack saved as a FITS and converted to a TIFF using Nebulosity. This preserves all of the source data from the live stack in a lossless format suitable for later processing and analysis. The middle image is the displayed real-time live stack showing the enhanced image which is saved as full-scale and thumbnail JPEG. The image on the right is the same data as the source image on the left, but processed using Photoshop, saved as a TIFF and finally as a JPEG. The illustrates that the Seestar does a great job grading, aligning and combining the source images, and saving a high-quality raw image in a lossless format. This is not only handy for later processing but does a great job showing what an object really looks like before the image is processed. The real-time enhanced image looks excellent and in some ways a tad better than my processed image (primarily a bit better contrast than my processed image, though that’s a matter of taste). And finally, the processed example shows that the raw live stack is well suited for stand-alone processing. For my initial evaluation I was also saving all of the raw source images so that I could stack them myself, but so far, I have found that the live stacked image works so well I no longer save the individual source images unless I have a specific interest in doing so.

Next up… I am going to see if I can pull photometric data from the raw live stack. The Seestar is so capable and easy to use it should make an excellent platform for obtaining photometric images of variable stars and asteroids. I’m hoping that ZWO adds a user-defined target capability to the app to make it easier to locate objects that are not in the current database.

There’s always one more thing! 🙂

Enjoy!

NGC 2903 – Spiral Galaxy in Leo

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC, GSO IR Blocking Filter

Guide scope: Astro-Tech 60mm, ZWO ASI120MM mini, PHD2

Exposure: 48x60sec, gain ISO 1600 saved as RAW, dithered every 2 images

Darks: Internal

Flats: 64×1/250sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.5

Stacking: Average, 1 sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

NGC 2903 is a fairly bright (Mv 9.0) galaxy located just south of the head of Leo (the Lion). The galaxy is 20.5 million light years away and is 80,000 light years across, making it a little slammer than the Milky Way. I first spotted this galaxy while star-hopping around Leo and Cancer. It is an easy target in an 8” scope where I was able to clearly see the core and bar. The sweeping arms are gorgeous in the photograph, but they are not visible from my backyard.

NGC 2903 is currently well-placed rising in the east during the early evening.

NGC 2261 – Hubble’s Variable Nebula in Monoceros

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC, GSO IR Blocking Filter

Guide scope: Astro-Tech 60mm, ZWO ASI120MM mini, PHD2

Exposure: 56x60sec, gain ISO 1600 saved as RAW, dithered every 2 images

Darks: Internal

Flats: 64×1/250sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency

Lensed Sky Quality Meter: 18.3

Stacking: Average, 1 sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

Hubble’s Variable nebula is a small, bright, fan-shaped reflection nebula in Monoceros (the Unicorn). The bright tip of the nebula is not just a star, but a dense nebula hiding a binary system at its core (R Mon). Clouds of dust are believed to orbit this system, casting shadows up onto the veil causing the overall brightness of the nebula to vary. Time lapse sequences spanning weeks of time show the shadows sweeping across the nebula. Visually, NGC 2261 appears very much like a beautiful fan-shaped comet. In fact, it appears more like a comet than some comets!

NGC 2261 is presently rising in the east as the sky darkens.