January 29, 2025

NGC 4565 – The Needle Galaxy in Coma Berenices

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC, GSO IR Blocking Filter

Guide scope: Astro-Tech 60mm, ZWO ASI120MM mini, PHD2

Exposure: 78x60sec, gain ISO 1600 saved as RAW, dithered every 2 images

Darks: Internal

Flats: 32x1sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.6

Stacking: Average, 1 sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

NGC 4565 is a relatively bright edge-on spiral galaxy in Coma Berenices. Glowing at a visual magnitude 9.6 it makes a fine target for modest size telescopes. It is thought that our own Milky Way galaxy would appear similar to the Needle Galaxy when viewed edge-on. It’s neat to see how these big beautiful spirals that appear so expansive when viewed face-on are actually relatively thin when viewed edge-on. NGC 4565 also shows a prominent dust lane common to most spiral galaxies. This galaxy is currently well placed in the evening sky on the northern fringe of the Melotte 111 star cluster, itself a beautifully rich region in binoculars and small telescopes.

Comet 12/Pons-Brooks, 3/27/2024, 20h50m EDT

Telescope/Camera: Seestar S50

Filter: None

Exposure: (60 + 60)x10sec (20min) saved as FITS

Average Light Pollution: Bortle 8, fair transparency at dusk

Software: Nebulosity, Photoshop

This is another quick grab of Comet 12/Pons-Brooks before it got too far down in the before it was lost to the haze and light pollution over my western horizon. This images is the combination of subs taken over a 10-minute period through two Seestar S50s operating in parallel. As the images were being taken the comet dropped from 19 degrees over the horizon to just 17 degrees. Although the comet was an easy target for the Seestar, it was really tough to see in my 10×50 binoculars.

Comet 12/Pons-Brooks, 3/23/2024, 21h00m EDT

Telescope/Camera: Seestar S50

Filter: None

Exposure: (60 + 60)x10sec (20min) saved as FITS

Average Light Pollution: Bortle 8, fair transparency at dusk

Software: Nebulosity, Photoshop

Well, this was fun. I am fortunate enough to own a pair of Seestar S50s that I usually use in in parallel recording data on different targets at the same time, often a series of variable stars. However, in this case I wanted to grab as much data as I could on Comet 12/Pons-Brooks before it was lost to the haze and light pollution over my western horizon, so I used them to image the comet simultaneously over a 10-minute period starting at 9:00pm EDT. This resulted in 60, 10sec exposure from each camera that were then aligned and combined in Nebulosity and processed in Photoshop. Given the challenging conditions I am delighted with the result.

NGC 2903 – Spiral Galaxy in Leo

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC, GSO IR Blocking Filter

Guide scope: Astro-Tech 60mm, ZWO ASI120MM mini, PHD2

Exposure: 48x60sec, gain ISO 1600 saved as RAW, dithered every 2 images

Darks: Internal

Flats: 64×1/250sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.5

Stacking: Average, 1 sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

NGC 2903 is a fairly bright (Mv 9.0) galaxy located just south of the head of Leo (the Lion). The galaxy is 20.5 million light years away and is 80,000 light years across, making it a little slammer than the Milky Way. I first spotted this galaxy while star-hopping around Leo and Cancer. It is an easy target in an 8” scope where I was able to clearly see the core and bar. The sweeping arms are gorgeous in the photograph, but they are not visible from my backyard.

NGC 2903 is currently well-placed rising in the east during the early evening.

NGC 2261 – Hubble’s Variable Nebula in Monoceros

Telescope: Astro-Tech 8” f/8 Ritchey-Chretien, Orion Atlas EQ-G

Camera: Canon EOS Ra, Baader Mk III MPCC, GSO IR Blocking Filter

Guide scope: Astro-Tech 60mm, ZWO ASI120MM mini, PHD2

Exposure: 56x60sec, gain ISO 1600 saved as RAW, dithered every 2 images

Darks: Internal

Flats: 64×1/250sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency

Lensed Sky Quality Meter: 18.3

Stacking: Average, 1 sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deep Sky Stacker, Nebulosity, Photoshop

Hubble’s Variable nebula is a small, bright, fan-shaped reflection nebula in Monoceros (the Unicorn). The bright tip of the nebula is not just a star, but a dense nebula hiding a binary system at its core (R Mon). Clouds of dust are believed to orbit this system, casting shadows up onto the veil causing the overall brightness of the nebula to vary. Time lapse sequences spanning weeks of time show the shadows sweeping across the nebula. Visually, NGC 2261 appears very much like a beautiful fan-shaped comet. In fact, it appears more like a comet than some comets!

NGC 2261 is presently rising in the east as the sky darkens.

M81 – Spiral Galaxy in Ursa Major

Telescope: Unitron 510 5” f/16 refractor, Atlas EQ-G

Camera: Canon EOS Ra full frame DSLR

Filter: 2” Baader Fringe Killer (minus V)

Guide scope: Williams Optics 50mm Guidescope, ASI290MM, PHD

Exposure: 47x60sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction)

Flats: 64x1/125s sky flats taken at dusk

Average Light Pollution: Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.6 mag/arc-sec^2

Stacking: Mean with a 1-sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deepsky Stacker, Nebulosity, Photoshop

This is the last image in this image set taken with the Unitron 510.

M81 is a beautiful spiral galaxy that is interacting with the nearby M82. The sky conditions for imaging this delicate galaxy were far from optimal, but it is still neat to see the beautiful sweeping arms sprinkled with star forming regions resulting from a close encounter with M82. Very pretty.

M81 is low in the northeast during the early evening and is high overhead after midnight.

NGC 2392 – The Eskimo Nebula in Gemini

Telescope: Unitron 510 5” f/16 refractor, Atlas EQ-G

Camera: Canon EOS Ra full frame DSLR

Filter: 2” Baader Fringe Killer (minus V)

Guide scope: Williams Optics 50mm Guidescope, ASI290MM, PHD

Exposure: 67x30sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction)

Flats: 64x1/125s sky flats taken at dusk

Average Light Pollution: Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.5 mag/arc-sec^2

Stacking: Mean with a 1-sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deepsky Stacker, Nebulosity, Photoshop

NGC 2392, Eskimo Nebula, is a wonderful little planetary nebula Gemini. Visually this nebula looks much like its nickname, even in a small telescope. Planetary nebula are formed when a star sheds its outer shell as it nears the end of its life while the core collapses into a fiercely bright white dwarf whose intense radiation sets the expanding shell of gas aglow, often with a beautiful blue/green color. The structure of NGC 2392 shows that it experienced several shedding events.

The Eskimo Nebula is currently well placed in the east during the early evening and a fairly easy target for small telescopes.

 

NGC 1245 – Open Cluster in Perseus

Telescope: Unitron 510 5” f/16 refractor, Atlas EQ-G

Camera: Canon EOS Ra full frame DSLR

Filter: 2” Baader Fringe Killer (minus V)

Guide scope: Williams Optics 50mm Guidescope, ASI290MM, PHD

Exposure: 16x60sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction)

Flats: 64x1/125s sky flats taken at dusk

Average Light Pollution: Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.5 mag/arc-sec^2

Stacking: Mean with a 1-sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deepsky Stacker, Nebulosity, Photoshop

NGC 1245 is a relatively faint but rich open cluster in central Perseus. It may be a tad faint for small telescopes, but blossoms into a fine patch of stardust in larger telescopes.

NGC 1245 is currently well placed in the evening sky and is high overhead in the northeast as the sky darkens.

M103 – Open Cluster in Cassiopeia

Telescope: Unitron 510 5” f/16 refractor, Atlas EQ-G

Camera: Canon EOS Ra full frame DSLR

Filter: 2” Baader Fringe Killer (minus V)

Guide scope: Williams Optics 50mm Guidescope, ASI290MM, PHD

Exposure: 16x60sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction)

Flats: 64x1/125s sky flats taken at dusk

Average Light Pollution: Bortle 8, fair transparency

Lensed Sky Quality Meter: 18.5 mag/arc-sec^2

Stacking: Mean with a 1-sigma clip

White Balance: Nebulosity Automatic

Software: Backyard EOS, Deepsky Stacker, Nebulosity, Photoshop

M103 is one of several open clusters in Cassiopeia. It is small, rather sparse, and was once thought to be an asterism rather than a true cluster, but it has since been shown to be a distant open cluster. Located just 1.5 degrees northeast of delta Cassiopeia it is easy to find and makes a nice target for small telescopes.

M103 is currently high in the northeast during the early evening.

 

Jupiter – 11/19/2023, 18h53m to 19h37m EST

Telescope: Unitron 510 5” f/16 refractor, Atlas EQ-G

Camera: ZWO ASI 294MC

Filter: 2” Baader Fringe Killer (Minus Violet)

Exposure: 5x(3min x 5ms), Gain 340, saved as RAW8/SER

Seeing: 3/5

White Balance: Nebulosity Automatic

Software: SharpCap Pro, Autostakkert, Registax, Nebulosity, Photoshop

These are the final, processed images from my second evening dedicated to evaluating the 510 for planetary imaging using a ZWO ASI294MC camera with SharpCap Pro. If you look closely you can see the ghost of Europa disappearing behind the planet in the first image (18h 53m). Each image in this sequence is a set of five 3min x 5ms RAW8/SER files stacked in AutoStakkert, wavelets in Registax, then derotated and combined in WinJuPos. The results is very encouraging given that these were taken at the telescope’s native focal length without the aid of a Barlow. I am very happy with how sharp the limb of the planet looks without any of the artifacts that you often see from the wavelets. The colors are a bit soft, which I suspect is from using a very high gain on the camera. More testing is needed…