January 22, 2025

M30 – Globular Cluster in Capricornus

M30 – Globular Cluster in Capricornus

M30 – Globular Cluster in Capricornus

Telescope: LXD75 SC8 @ f/6.3, LX65 mount, altaz mode

Camera: Baader modified Canon 600Da, interval timer

Filter: GSO IR Blocking Filter

Guide scope: None

Exposure: 31x10sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 18.4

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Deep Sky Stacker, Nebulosity, Photoshop

M30 is a relatively small, bright, condensed globular that makes a fine target for small telescopes. In larger scopes it resolves nicely into a tiny patch of stardust.

This is one of a series of images that I have been taking to explore using relatively simple equipment and techniques. This is a good example of a patrol image; a quick’n simple image taken just to see what a target looks like. Looking at mjy notes this is only the 3rd time that I have imaged M30, so for me it lies a bit off of the beaten path. I have since visited it several time with my visual gear and it makes a fine target while star-hopping across Capricornus.

M30 is currently well placed to the lower left of Jupiter in the evening sky.

Comet 67P/Churyumov-Gerasimenko

Comet 67P/Churyumov-Gerasimenko 11/6/2021 4h15m EST

Telescope: ES Comet Hunter MN6 at f/4.8, Orion Atlas EQ-G

Camera: Baader modified Nikon 610

Filter: 2” Orion Imaging Skyglow Filter

Guide scope: Williams Optics 50mm, ASI290MM mini, PHD

Exposure: 34x60sec, ISO 400, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/250sec, tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, good transparency

Lensed Sky Quality Meter: 18.7

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Backyard Nikon, Nebulosity, Deep Sky Stacker, Photoshop

This image shows the motion of Comet 67P/Churyumov-Gerasimenko between 4:15am and 5:15am EST on the morning of 11/6/2021 as is swept past upsilon Gemini to the upper right in this field. The comet was glowing at about magnitude 9.9 at a distance of 39 million miles. Comet 67p is the resting site of the ESA Rosetta probe and Philae lander.

Comet 67P/Churyumov-Gerasimenko is currently crossing Gemini in the morning sky.

NGC 188 – Open Cluster in Cepheus

NGC 188 – Open Cluster in Cepheus

Telescope: LXD75 SC8 @ f/6.3, LX65 mount, altaz mode

Camera: Baader modified Canon 600Da, interval timer

Filter: GSO IR Blocking Filter

Guide scope: None

Exposure: 38x10sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 18.4

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Deep Sky Stacker, Nebulosity, Photoshop

Located less than 5 degrees from the north celestial pole NGC 188 is one of the most northern objects in the New General Catalog. It is also one of the oldest open clusters known with an estimated age on the order of 5 billion years. Open clusters usually slowly disperse as they interact with other stars in the surrounding galaxy. NGC 188, however, lies above the galactic plane where it is fairly isolated. Composed almost entirely of 12 and 13th magnitude yellow giants, I find this cluster to be quite delicate, requiring very good transparency to be visible in an 8” telescope. Under these conditions it blossoms into a rich field of tiny pinpoints of light on the edge of visibility and it is quite beautiful. In a larger telescope it becomes easier to see, but remains quite faint and subtle.

This is one of a series of images that I have been taking to explore using relatively simple equipment and techniques. This is a good example of a target located in a region of the sky where an altaz mount will show a significant amount of field rotation and tracking can get a bit tricky, but this system still performed quite well.

NGC 188 is currently well placed to the upper right of Polaris in the evening sky.

M20 – The Trifid Nebula in Sagittarius

M20 – The Trifid Nebula in Sagittarius

Telescope: LXD75 SC8 @ f/6.3, LX65 mount, altaz mode

Camera: Baader modified Canon 600Da, interval timer

Filter: GSO IR Blocking Filter

Guide scope: None

Exposure: 36x10sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 18.3

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Deep Sky Stacker, Nebulosity, Photoshop

M20, the Trifid Nebula in Sagittarius is one of a series of nebula that grace the summer Milky Way. The red is a tenuous cloud of interstellar hydrogen set aglow by stars embedded in it, the blue is dust in the background reflecting starlight, and the dark lanes are vast streamers of dust in the foreground. Being near the Milky Way this field is crowded with faint stars, though the density of stars is uneven. The dark regions show areas of dust blocking the light from the faint distant stars in the background while the brighter regions are relatively clear avenues into the deep galaxy beyond.

This is one of a series of images that I have been taking to explore using relatively simple equipment and techniques. M20 is one of several examples of nebula that are utterly invisible from my backyard, even in my 16.5”, but are within easy reach of modest imaging equipment. For me, imaging is primarily an extension of visual observing and while the product is a photograph, the thrill is observing targets that are otherwise invisible.

M20 is currently low in the southwest at sunset.

M8 – Emission Nebula in Sagittarius

M8 – Emission Nebula in Sagittarius

Telescope: LXD75 SC8 @ f/6.3, LX65 mount, altaz mode

Camera: Baader modified Canon 600Da, interval timer

Filter: GSO IR Blocking Filter

Guide scope: None

Exposure: 36x10sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 18.3

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Deep Sky Stacker, Nebulosity, Photoshop

M8, the Lagoon Nebula, is a large bright emission nebula in Sagittarius. It is an easy binocular object and just keeps getting better with larger telescopes. Visually it does look like a lagoon, but photographically it blossoms out into a beautiful red rose. The color comes from diffuse interstellar hydrogen set aglow by stars embedded within it.

This is one of a series of images that I have been taking to explore using relatively simple equipment and techniques. Diffuse objects like this emission nebula are proving to be a bit of a challenge, but still rewarding.

M8 is currently low in the southwest at sunset.

M55 – Globular Cluster in Sagittarius

M55 – Globular Cluster in Sagittarius

Telescope: LXD75 SC8 @ f/6.3, LX65 mount, altaz mode

Camera: Baader modified Canon 600Da, interval timer

Filter: GSO IR Blocking Filter

Guide scope: None

Exposure: 28x10sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 18.3

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Deep Sky Stacker, Nebulosity, Photoshop

M55 is a large, relatively sparse, class 11 globular cluster in Sagittarius. Its low surface brightness and far southern declination makes it something of a challenge in small telescopes from mid northern latitudes, but it lies to the east of the Milky Way which helps to improve the contrast with the background sky. In a large telescope it blossoms into a soft patch of stardust.

This is one of a series of images that I have been taking to explore using relatively simple equipment and techniques. This is a nice example of going after a relatively challenging target under challenging conditions.

M55 is currently low in the south at sunset.

M28 – Globular Cluster in Sagittarius

M28 – Globular Cluster in Sagittarius

Telescope: LXD75 SC8 @ f/6.3, LX65 mount, altaz mode

Camera: Baader modified Canon 600D, interval timer

Filter: GSO IR Blocking Filter

Guide scope: None

Exposure: 34x10sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 18.3

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Deep Sky Stacker, Nebulosity, Photoshop

M28 is a bright, condensed globular that reminds me a bit of M80 in Scorpius, and like M80 is has a flashy neighbor (nearby M22) that can draw your attention. Looking at my notes this is only the second time that I have imaged this object. M28 is a wonderful patch of stardust against the rich star fields of the galactic center and makes a fine target for small telescopes.

This is one of a series of images that I have been taking to explore using relatively simple equipment and techniques. This is a nice example of using these techniques to capture quick’n easy patrol images of potential targets for later follow-up with more detailed imaging or for visual observing.

M28 is currently in the southwest at sunset.

M16 – The Eagle Nebula in Serpens Cauda

M16 – The Eagle Nebula in Serpens Cauda

Telescope: LXD75 SC8 @ f/6.3, LX65 mount, altaz mode

Camera: Baader modified Canon 600D, interval timer

Filter: GSO IR Blocking Filter

Guide scope: None

Exposure: 38x10sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 18.3

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Deep Sky Stacker, Nebulosity, Photoshop

M16 is actually the cluster in the upper right section of the nebula. The nebula is very subtle and can be difficult to see visually, though it shows well under dark skies. The name, the Eagle Nebula, comes from the dark lanes in the middle which resembles an eagle grasping a fish. These dust lanes are also the famous ‘pillars of creation’ imaged by the Hubble Space Telescope. The nebula is a beautiful expanse of interstellar hydrogen set aglow from young stars embedded within it. M16 lies in the Sagittarius-Carina arm of the Milky Way, the next arm inwards from ours towards the core of our galaxy, so you are looking across the gap between adjacent spiral arms.

This is one of a series of images that I have been taking to explore using relatively simple equipment and techniques. This is a nice example of going after a relatively challenging target under challenging conditions.

M16 is currently in the southwest at sunset.

M103 – Open Cluster in Cassiopeia

M103 – Open Cluster in Cassiopeia

Telescope: LXD75 SC8 @ f/6.3, LX65 mount, altaz mode

Camera: Baader modified Canon 600Da, interval timer

Filter: GSO IR Blocking Filter

Guide scope: None

Exposure: 30x10sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 18.1

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Deep Sky Stacker, Nebulosity, Photoshop

M103 is one of several open clusters in Cassiopeia. It is small, rather sparse, and was once thought to be an asterism rather than a true cluster, but it has since been shown to be a distant open cluster. Located just 1.5 degrees northeast of delta Cassiopeia it is easy to find and makes a nice target for small telescopes.

This is one of a series of images that I have been taking to explore using relatively simple equipment and techniques. The region of the sky near the celestial pole can get a bit interesting with an altaz mount with sizable movement in both axis and a considerable amount of field rotation, but the overall results are very similar to what I have been getting with less challenging areas of the sky.

M103 is currently well placed in the northeast at sunset.

NGC 7789 – Open Cluster in Cassiopeia

NGC 7789 – Open Cluster in Cassiopeia

Telescope: LXD75 SC8 @ f/6.3, LX65 mount, altaz mode

Camera: Baader modified Canon 600Da, interval timer

Filter: GSO IR Blocking Filter

Guide scope: None

Exposure: 39x10sec, ISO 1600, saved as RAW

Darks: Internal (Long Exposure Noise Reduction On)

Flats: 32×1/25sec, Tee shirt flats taken at dusk

Average Light Pollution: Red zone, Bortle 8, poor transparency, moonlight

Lensed Sky Quality Meter: 18.1

Stacking: Mean with a 1-sigma clip.

White Balance: Nebulosity Automatic

Software: Deep Sky Stacker, Nebulosity, Photoshop

NGC7789 is a large and wonderfully rich open cluster located just west of Cassiopeia. It was discovered by Caroline Herschel in 1782 and is sometimes called Caroline’s Rose. It is a delicate object in small to moderate scopes, but blossoms into a rich field in large telescopes. When viewing this cluster I like to spend some time with the field. At first all I will see are the foreground stars and perhaps a soft glow in the background. As my eye adjusts, the first faint stars appear, and then it slowly blooms into a beautiful patch of stardust.

Caroline’s Rose is currently well placed in the northeast at sunset.